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Weibel instability due to inverse bremsstrahlung absorption
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A new Weibel source due to the inverse bremsstrahlung absorption is presented. It has been shown that in
homogeneous plasmas, this mechanism may drive strong collisionless Weibel modes with growth rates of
order of g;1011 s21 and negligible group velocities. In the laser-produced plasmas, for short laser wave-
lengths (lL,1mm) and high laser fluxes (I.1014 W/cm2), this Weibel source is most efficient as the ones
due to the heat flux and the plasma expansion. The useful scaling law of the convectivee-foldings, with respect
to the laser and the plasma parameters, is also derived.@S1063-651X~97!07206-1#

PACS number~s!: 52.40.Nk, 52.35.Qz
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I. INTRODUCTION

The presence of strong magnetic fields~in a megagauss
range! in laser irradiated targets could be detrimental to
process of ablative implosion, necessary for achieving th
monuclear fusion reactions. Indeed, several effects could
induced by these fields, such as the anomalous reductio
the electron heat flux from the laser energy deposition la
to the ablation surface, reduction of the mass ablation r
filamentation of the plasma flow, etc. Various mechanis
responsible for producing suchB fields have been reported i
the literature: thermoelectric effects@1#, nonlinear effects@2#,
Rayleigh-Taylor@3# and electromagnetic@4# instabilities, etc.
In this paper, we deal with the Weibel instability due to t
inverse bremsstrahlung absorption in homogeneous plas
and laser-produced plasmas. It has been shown by Weibe@4#
that anisotropic distribution functions in the velocity spa
may drive unstable electromagnetic modes. For a symm
cal angular distribution function about thex axis
f (vx ,v,x), a positive second anisotropic distribution fun
tion (Tx.T') drives unstablek' modes, whereas a negativ
second anisotropic distribution function (Tx,T') drives un-
stablekx modes@5#. Here, the subscriptsx and', denote the
parallel and perpendicular direction to thex axis. Thesekx
and k' modes were extensively studied in the overde
plasma by Epperlein and co-workers@6# in the collisional
limit ( kl!1) and by Ramani and Laval@7# in the collision-
less one (kl.1); k being the wave number andl(ne ,T)
54pe0

2T2/nee
4(Z11)lnL, the electron mean free path

whereT denotes the electron temperature,ne the electron
density,e the electron charge,Z the ion charge number, an
lnL the Coulomb logarithm. In these works, it has be
shown that in the conduction region, thekx mode is stable
whereas thek' mode is moderately unstable~the growth rate
is of the order ofg;109 s21!. On the other hand, usin
Fokker-Planck simulations, Matte, Bendib and Luciani@8#
have been pointed out strongly unstable collisionlesskx
modes (g;1011 s21) in the underdense plasma.

In this paper, we present a first analytic analysis of W
bel modes due to the inverse bremsstrahlung absorp
~IBA ! source. The Weibel source has been computed thro
551063-651X/97/55~6!/7522~5!/$10.00
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an analytic model based on the plasma kinetic theory. T
physical mechanism is fairly straightforward: the IBA of th
laser pulse is produced preferentially along the electric-fi
direction, resulting in a weak plasma temperature anisotro
So, for a circularly polarized laser wave,E5E(y1 iz), it
results to a temperature anisotropy,Tx,T' , which drives
unstablekx modes, whereas for a linearly polarized las
wave, E5Ex, it results to a temperature anisotropy,Tx
.T' , which drives unstablek' modes.

This work is organized as follows. In Sec. II the bas
kinetic equation and the semicollisional dispersion relat
of quasistatic electromagnetic waves are presented. Se
III is devoted to the stability analysis of the Weibelkx
modes. For this, we compute explicitly the Fokker-Plan
equation in presence of a high frequency electric field a
deduce the group velocity, the growth rate, and the num
of convectivee-foldings. The useful expression of the num
ber of convectivee-foldings with respect to the plasma an
the laser parameters is also derived. Finally, a discussion
a conclusion are given in Sec. IV.

II. BASIC EQUATIONS

Throughout this work we use the Fokker-Planck~FP!
equation which describes, in particular, the thermal transp
and the light energy absorption in fully ionized plasmas. F
lowing the Braginskii@9# notations, the FP equation for th
electrons reads:

] f

]t
1v•

] f

]r
2

e

me
~E1v3B!•

] f

]v
5Cei~ f !, ~1!

where

Cei~ f !5
n

v3
]

]v i
~v iv j2v2d i j !

] f

]v j
. ~2!

In Eqs. ~1! and ~2!, E andB are the electric and magneti
fields respectively,n5v t

4/2l, where v t5AT/me is the
electron-thermal velocity. The right-hand side~RHS! of Eq.
~1! corresponds to the collision terms, whereCei is the Lan-
dau electron-ion collision operator. We have neglected in
7522 © 1997 The American Physical Society
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55 7523WEIBEL INSTABILITY DUE TO INVERSE . . .
~1!, the electron-electron collision term, which correspon
to the Lorentz plasma approximation~high Z limit ! and in
Eq. ~2!, the terms due to the energy exchange between
and electrons, of the order ofme /mi .

For the Weibel modes analysis, Eq.~1! should be coupled
with the semicollisional dispersion relation derived in R
@5#. This dispersion relation is valid in the whole collision
ality regime and is derived in the local approximation,kL
@1; L being the plasma inhomogeneity scale length and
Lorentz gas approximation. Practical expressions of
group velocityVg and the growth rateg, using numerical fits
of the continuous fractions with a precision better than 5
are computed. For thekx mode, these expressions are giv
by

Vg5FA62 v tE
0

`

y5/2F~y,kl! f 1~y!dyG Y D ~3!

and

g~k!5F 3

64p

ne
lv t

2

k2c2

vp
2

1
3A25

A5
lv tk

2E
0

`

y9/2G~y,kl! f 2~y!dyG Y D,

~4!

where,

D5E
0

`

y3F~y,kl!
] f 0
]y

dy,

F5@„11~a/d!2…21/2#/2,

G52~11a2u!/@3~11a2b!~112F !#,

a58kly2, d53p/2, u530b/d2

and b5~5d2/25223/4!/~d2230!. ~5!

In Eqs. ~3!–~5!, c is the light speed,vp is the plasma fre-
quency,y5v2/2v t

2 is the normalized square velocity,f 0 is
the isotropic distribution function, andf 1 , f 2 , the first and
the second anisotropic distribution function defined throu
the expansion of the distribution function upon the Legen
polynomials,Pl(vx /v),

f5(
l50

`

f l~v !Pl~vx /v !A2l11. ~6!

Equation~3! shows that the group velocity is described
the first anisotropic distribution functionf 1 , whereas in Eq.
~4!, the first term represents the dissipative effects and
second one, the Weibel source, which depends on the se
anisotropy f 2 . Note that, Eqs.~3! and ~4! recover in the
collisionless limit (kl.1), the results derived in Ref.@7#.
For the Weibel instability analysis in inhomogeneous pl
mas, the relevant physical quantity is the number of conv
tive e-foldingsC. This quantity may be computed with th
WKB method
s

ns

.
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C~ki !5E
xi

xf
g@k~ki ,x!,x#/Vg@k~ki ,x!,x#dx, ~7!

whereki is the optimum wave number of the Weibel mode
the plasma layer defined by the densityne (xi) and (xf–xi)
is the extent of the growth region. The wave numberk
5k(ki ,x) varies so as to keep the real part of the frequen
v r , fixed.

III. WEIBEL SOURCE DUE TO INVERSE
BREMSSTRAHLUNG ABSORPTION

A. Fokker-Planck equation in presence
of a high-frequency electric field

Let us now compute the electron distribution function
an unmagnetized plasma in the presence of an oscilla
electric field. As we aim at obtaining in this section the IB
contribution to the Weibel source, we consider for simpl
ity, homogeneous plasmas in order to avoid the Wei
sources due to the thermal transport and the plasma ex
sion @10#. In order to take into account the high-frequen
~hf! response of plasma electrons to the laser field excitat
we split up the distribution function into a low-frequency~lf !
part f s and a partf h , which oscillates at the laser frequenc
v0 . From Eq.~1!, we deduce the hf and the lf equations

] f s
]t

2
e

me
KEh•

] f h
]v L 5Cei~ f s!, ~8!

] f h
]t

2
e

me
Eh•

] f s
]v

5Cei~ f h!, ~9!

where the bracket̂ . . . & denotes the average over the las
period. The explicit derivation of Eqs.~8! and ~9! needs to
specify the laser-wave polarization.

~i! Linearly polarized laser wave. The laser electric fie
can be expressed as

Eh5Re@E0exp~ iv0t !#x ~10!

and the distribution function can be expanded as

f ~v,t !5 f s~v,m,t !1Re@ f h~v,m!exp~ iv0t !#, ~11!

wherem5cosu5vx /v.
Using Eqs.~2!, ~10!, and~11!, Eqs.~8! and ~9! become

] f s
]t

2
n

v3
]

]m
~12m2!

] f s
]m

5
1

2
ReFeE0*me

S m
] f h
]v

1
1

v
~12m2!

] f h
]m D G

~12!

and
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iv0f h2
n

v3
]

]m
~12m2!

] f h
]m

5
eE0
me

Fm ] f s
]v

1
1

v
~12m2!

] f s
]m G ,

~13!

where the notation~* ! denotes conjugate complex.
For solving Eqs.~12! and ~13!, we use the following ex-

pansions

f s5(
l50

`

A2l11Pl~m! f sl~v !

and f h5(
l50

`

A2l11Pl~m! f hl~v !,

where we recall that thePl(m) are the Legendre polynomi
als. Using recursion relations@11# of the Legendre polyno-
mials, after some algebra, Eq.~13! becomes

f̄ hl~v !5F2
ieE0
v0me

1
eE0

v0
2me

l ~ l11!n

v3 GF lv l21

2l21

]

]v

f̄ sl21

v l21

1
2l11

2l13

1

v l12

]

]v
v l12 f̄ sl11

G , ~14!

where the high-frequency approximation@12# v0v t
3@n, and

the notationsf̄ sl ,hl5A2l11 f sl ,hl , have been used. Subst
tuting the relation~14! into Eq. ~12!, we obtain the secula
FP equation

] f̄ sl
]t

1
n

v3
l ~ l11! f̄ sl

5
nv0

2

2
F l 2~ l21!

2l21
v l21

]

]v
S l21

2l23

1

v4
]

]v

f̄ sl22

v l22

1
l

2l11

1

v2l13

]

]v
v l11 f̄ sl D G1

nv0
2

2
F ~ l11!2~ l12!

2l13

3
1

v l12

]

]v
S l11

2l11
v2l21

]

]v

f̄ sl
v l

1
l12

2l15

1

v4
]

]v
v l13 f̄ sl12

D G , ~15!

wherev05ueE0 /mev0u, is the quiver velocity of oscillation
of the electron in the hf electric field.

~ii ! Circularly polarized laser wave. Similarly, for a circu
larly polarized hf laser field,

Eh5
1

&
Re@E0exp~ iv0t !~ ŷ1 i ẑ!#. ~16!

The distribution function can be split up into

f ~v,t !5 f s~v,m!1Re@ f h~v,m!exp~ iv0t1 if!#, ~17!
wheref5arctg(vz /vy). From Eqs.~2!, ~8!, ~9!, ~16!, and
~17!, we deduce the lf and the hf equations,

] f s
]t

2
n

v3
]

]m
~12m2!

] f s
]m

5
1

2
ReF eE0*

me&
S sin~u!S ] f h

]v
2

m

v
] f h
]m D1

1

sinu

f h
v G , ~18!

iv0 f̄ h2
n

v3
]

]m
~12m2!

] f̄ h
]m

5
eE0

me&
sin~u!F ] f̄ s

]v
2

m

v
] f̄ s
]m G .

~19!

In this case we use the expansions

f s5(
l50

`

A2l11Pl~m! f sl~v !, ~20!

f h5(
l50

`

A2l11Pl
1~m! f hl~v !, ~21!

where thePl
1(m) are the associated Legendre function

These expansions are imposed by the geometry of the p
lem. Using Eqs.~18!–~21!, and recursion relations@11# on
thePl

1(m), we obtain

f̄ hl~v !5F2
ieE0

v0me&
1

eE0

v0
2me&

l ~ l11!n

v3 G
3F 1

2l21
S ] f̄ sl

]v
2~ l21!

f̄ sl
v
D

2
1

2l13
S ] f̄ sl

]v
1~ l12!

f̄ sl
v
D G , ~22!

] f̄ sl
]t

1
n

v3
l ~ l11! f̄ sl

5
nv0

2

4
F ~ l11!2~ l12!2

2l13

1

v l12

]

]v
S 1

2l11
v2l21

]

]v

f̄ sl
v l

2
1

2l15

1

v4
]

]v
v l13 f̄ sl12

D G2
nv0

2

4

3F l 2~ l21!2

2l21
v l21

]

]v
S 1

2l23

1

v4
]

]v

f̄ sl22

v l22

2
1

2l11

1

v2l13

]

]v
v l11 f̄ sl D G . ~23!

Note that Eqs.~15! and ~23!, recover forl50, the isotropic
equation derived by Langdon@12#, and give more general
ized results, which take into account the contribution of t
IBA to the anisotropic distribution functionsf sl ( l.0).

B. Group velocity, growth rate, and number of convective
e-foldings

Keeping in Eqs.~15! and ~23! the dominant terms corre
sponding to the lower order with respect to the small para
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eter v0 /v t;e, it results in the quasistatic approximation
(] f /]t'0), the second distribution function equation

1

3A5
pnv0

2Fv ]

]v S 1v4 ]

]v
f s0D G2

6n

v3
f s250, ~24!

where p521, 2 for a circularly and a linearly polarized
laser wave, respectively. We can see from Eqs.~15! and~23!,
that the first distribution function and more generally the od
order components of the distribution function are negligible
i.e., f 2n11;0, and on the other hand, from Eq.~24!, that the
second distribution function scales as (v0 /v t)

2;e2. We can
conclude that the IBA source does not contribute efficientl
to the convection of quasistatic magnetic structures and
may be an efficient mechanism for their amplification, since
as it is known@5,7#, a second-order (;e2) anisotropic dis-
tribution function f s2 corresponds, in Eq.~4!, to a strong
Weibel source term. We give in Fig. 1, the spectrum of th
growth rate for two typical numerical cases. As expected
very high growth rates have been obtained (g.1011 s21).
We note that the most unstable modes range in the collisio
less regime and that in thek space, the growth region is
shifted to the lowkl values for decreasing laser wavelength
lL . In such homogeneous plasmas, the magnetic modes c
grow strongly and stagnate instead of being convected aw

FIG. 1. Maximum growth rategmax versus the parameterkl
~k is the wave number andl the electron mean free path! for typical
laser and plasma parameters. The solid line and the dashed l
correspond, respectively, to the linearly and circularly laser wave
d
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y
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e
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as it is shown in Refs.@5–8#. It results that these Weibe
modes may reach huge intensities even for localized IBA
the laser energy.

In inhomogeneous plasmas, one has to take into acc
both gradient and IBA sources. In order to get an estimate
the IBA to the Weibel instability in laser-created plasma
one neglects the contributions of the heat flux and the pla
expansion@10# sources to the second anisotropic distributi
function and keeps the contribution of the heat flux source
the first anisotropic distribution function. For simplicity, w
assume a gentle inhomogeneous steady-state plasma,
the temperature anisotropy is weak and in Eq.~24!, f s0 is
assumed to be a Maxwellian. Furthermore, we conside
laser wave normally incident on a plasma defined by an
thermal corona and a linear density profile, i.e.,ne
5nc x/Ln . The laser electric fieldEh is computed numeri-
cally from the wave equation@13#

]2Eh

]x2
1

v0
2

c2
Eh2m0

] J̄e
]t

50, ~25!

and the fluid electron motion equation,

]Ve

]t
1

n t
l„n~x!,T…

Ve52
eEh

me
, ~26!

whereJe52eneVe is the electron current density andVe ,
the fluid electron velocity. Using a circularly polarized las
field, we have computed from Eq.~7!, the number of con-
vectivee-foldings for thekx modes. Three numerical case
have been performed

case 1: lL51.06 mm, tL51 ns, I a51014 W/cm2,

Z5A/254

case 2: lL50.53 mm, tL50.6 ns,

I a5731014 W/cm2, Z5A/254

case 3: lL50.353 mm, tL50.6 ns,

I a5231015 W/cm2, Z5A/254,

where,lL is the laser wavelength,tL is the pulse duration,
I a is the absorbed laser intensity, andZ is the ion charge
number. The extents of the growth region are (xf–xi)
'0.14Ln , 0.12Ln , and 0.10Ln and the numbers of convec
tive e-foldings areCIBA5115, 92, and 47, respectively
These results show that the IBA source may drive stro
unstable magnetic modes at the vicinity of the critical lay
For practical purposes, we have computed numerically
expression ofCIBA with respect to the relevant plasma an
laser parameters

CIBA50.13S gmax~s
21!

1011 s21 D S 105 m/s

Vg~m/s!
DLn~mm!

3S 126.331024
Ln
lL

D , ~27!

where

ine
.
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Vg~m/s!51.843105S Z11

Z D 1/2S I a
1014 W/cm2D 1/3S lL

1 mmD 2/3,
and

gmax~s
21!57.23109S Z11

Z D
3S I a

1014 W/cm2D 5/63S lL

1 mmD 2/3S LnlL
D 1/2

3S 22AIBA12~12AIBA !1/2

AIBA
D 3/2

3expS 20.69
v t
c

Ln
lL

D .
The scaling law of the electron temperature is defined in R
@14# and the density scale length is roughlyLn'cstL . The
IBA rate for a linear density profile is given by@13#

AIBA512expS 3215 v tc Ln
lL

D .
We have checked for several numerical cases that Eq.~27!
gives numerical fits with a good precision (<7%).

IV. DISCUSSION AND CONCLUSION

We have shown in this work that a high-frequency ele
tric field with moderate strength may constitute an efficie
Weibel source in homogeneous plasmas. The growth rat
the Weibel modes rate may reach 1011 s21 and the group
velocity is negligible. In laser-created plasmas the IB
mechanism competes with the plasma expansion~PE! and
the heat flux~HF! mechanisms@10#. In any case, the unstabl
Weibel modes are convectively amplified towards the und
dense plasma and the group velocity is comparable to the
f.

-
t
of

r-
on

acoustic speed,Vg;cs . The magnitude and the spatial loc
tion of the magnetic field strongly depend on the laser wa
length. For large laser wavelengths (lL;10mm), the gen-
eration of the magnetic field due to the IBA source in t
vicinity of the critical layer, is as efficient as the ones due
the HF and the PE sources@10#. For short laser wavelengths
(lL;1mm), the growth region of theB field due to the PE
source is located on the very underdense plasma, whe
the HF and the IBA sources are confined to the vicinity
the critical layer where, the thermal gradients are import
and, the laser energy is deposited. For decreasing laser w
lengths, the number of convectivee-foldings strongly de-
creases for the HF source@10# (Chf;lL

11/3), whereas it is
still important for the IBA source. In conclusion, strong co
lisionless magnetic modes may be driven by the Wei
mechanisms in the corona of laser-created plasmas. F
spatial amplification factor, exp(C);103, corresponding to
C;7, a seed of magnetic field of few kilogauss in the vici
ity of the critical layer, may be convectively amplified to th
megagauss range. In this range of intensity the nonlin
saturation, as the mode coupling, occurs and rigorously
theory is no longer valid. These fields may inhibit the the
mal transport, could impede the expansion of the corona,
may contribute to the production of filamentary structur
For future laser-produced plasma experiments, correspo
ing to long laser duration and short laser wavelength,
plasma gradients are weak and the IBA source should be
most efficient mechanism for producing such megagausB
fields.
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