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Weibel instability due to inverse bremsstrahlung absorption
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A new Weibel source due to the inverse bremsstrahlung absorption is presented. It has been shown that in
homogeneous plasmas, this mechanism may drive strong collisionless Weibel modes with growth rates of
order of y~10'! s and negligible group velocities. In the laser-produced plasmas, for short laser wave-
lengths ¢ <1 um) and high laser fluxes 10" W/cn?), this Weibel source is most efficient as the ones
due to the heat flux and the plasma expansion. The useful scaling law of the coneefclidimgs, with respect
to the laser and the plasma parameters, is also deligd®63-651X97)07206-1

PACS numbes): 52.40.Nk, 52.35.Qz

[. INTRODUCTION an analytic model based on the plasma kinetic theory. The
physical mechanism is fairly straightforward: the IBA of the
The presence of strong magnetic fieldis a megagauss laser pulse is produced preferentially along the electric-field
range in laser irradiated targets could be detrimental to thedirection, resulting in a weak plasma temperature anisotropy.
process of ablative implosion, necessary for achieving therSo, for a circularly polarized laser wave=E(y+iz), it
monuclear fusion reactions. Indeed, several effects could b@sults to a temperature anisotroply,<T, , which drives
induced by these fields, such as the anomalous reduction gnstablek, modes, whereas for a linearly polarized laser
the electron heat flux from the laser energy deposition layewave, E=EX, it results to a temperature anisotropyy
to the ablation surface, reduction of the mass ablation rate> 1. . Which drives unstabl&, modes. _
filamentation of the plasma flow, etc. Various mechanisms _ 1S work is organized as follows. In Sec. Il the basic
responsible for producing sughfields have been reported in Kinetic equation and the semicollisional dispersion relation
the literature: thermoelectric effedts], nonlinear effectfz],  ©f quasistatic electromagnetic waves are presented. Section

; . Ill is devoted to the stability analysis of the Weibk|
:?aylglgh—Taylor[S] and e!ectromagr?et[cz,‘%] |nst§pllltles, ete. modes. For this, we compute explicitly the Fokker-Planck
n this paper, we deal with the Weibel instability due to the o : S
inverse bremsstrahlung absorption in homogeneous plasmeguat'on in presence of a high frequency electric field and

FRduce the group velocity, the growth rate, and the number
and Ias_er-produce_d plasmas. It ha_\s be_en shown by_ Weibel of convectivee-foldings. The useful expression of the num-
that an_lsotroplc distribution funct|(_)ns in the velocity spacepq, of convectivee-foldings with respect to the plasma and
may drive unstable electromagnetic modes. For a symmetry,g |aser parameters is also derived. Finally, a discussion and
cal angular distribution function about thex axis 4 conclusion are given in Sec. IV.
f(vy,v,X), a positive second anisotropic distribution func-
tion (T,>T,) drives unstablé&, modes, whereas a negative
second anisotropic distribution functiom (< T, ) drives un-
stablek, modeq5]. Here, the subscripts and_L, denote the Throughout this work we use the Fokker-PlandkP)
parallel and perpendicular direction to tkeaxis. Thesek,  equation which describes, in particular, the thermal transport
and k, modes were extensively studied in the overdensend the light energy absorption in fully ionized plasmas. Fol-
plasma by Epperlein and co-workef§] in the collisional lowing the Braginskii[9] notations, the FP equation for the
limit (k\<1) and by Ramani and Lav§f] in the collision-  electrons reads:
less one KA>1); k being the wave number and(n.,T)
=47eiT2ne*(Z+1)In A, the electron mean free path, w ﬁ—i(EJrvx B). (?_f:Cei(f Lo
where T denotes the electron temperaturg, the electron at ar  mg v
density,e the electron charge, the ion charge number, and
InA the Coulomb logarithm. In these works, it has beenwhere
shown that in the conduction region, tkg mode is stable
whereas thé&, mode is moderately unstable growth rate
is of the order ofy~10° s%). On the other hand, using
Fokker-Planck simulations, Matte, Bendib and Lucifyj
have been pointed out strongly unstable collisionl&gs In Egs.(1) and(2), E andB are the electric and magnetic
modes ¢~ 10'! s7%) in the underdense plasma. fields respectively,y=v{/2\, where v,=\T/m, is the

In this paper, we present a first analytic analysis of Wei-electron-thermal velocity. The right-hand sitRHS) of Eq.
bel modes due to the inverse bremsstrahlung absorptiofi) corresponds to the collision terms, wh&g is the Lan-
(IBA) source. The Weibel source has been computed througthau electron-ion collision operator. We have neglected in Eq.

Il. BASIC EQUATIONS

Colf )=~ (w0 —v28) @
(f)=—=-—(vivj—v°6;) —.
elt )= 33 5y, WIVIT Vo) Gy
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(1), the electron-electron collision term, which corresponds X
to the Lorentz plasma approximatighigh Z limit) and in C(ki):J k(i %), x]/ Vgl k(k; ,x),x]dX, )
Eq. (2), the terms due to the energy exchange between ions .
and electrons, of the order af,/m; .

For the Weibel modes analysis, Ed) should be coupled wherek; is the optimum wave number of the Weibel mode at
with the semicollisional dispersion relation derived in Ref.the plasma layer defined by the density(x;) and (;—x;)
[5]. This dispersion relation is valid in the whole collision- is the extent of the growth region. The wave numiber
ality regime and is derived in the local approximatid, =k(k;,x) varies so as to keep the real part of the frequency
>1; L being the plasma inhomogeneity scale length and the, , fixed.
Lorentz gas approximation. Practical expressions of the
group velocityVy and the growth rate, using numerical fits
of the continuous fractions with a precision better than 5%,
are computed. For thie, mode, these expressions are given
by A. Fokker-Planck equation in presence

of a high-frequency electric field

Ill. WEIBEL SOURCE DUE TO INVERSE
BREMSSTRAHLUNG ABSORPTION

Vg=

\/76 UtJ y5’2F(y,k)\)f1(y)dy}/ D ©) Let us now compute the. electron distribution functic_)n Qf
0 an unmagnetized plasma in the presence of an oscillating

electric field. As we aim at obtaining in this section the IBA

and contribution to the Weibel source, we consider for simplic-
ity, homogeneous plasmas in order to avoid the Weibel

2.2
(k)= i Ne k“c sources due to the thermal transport and the plasma expan-
64 )\vf wf, sion [10]. In order to take into account the high-frequency
(hf) response of plasma electrons to the laser field excitation,
3/2° > [~ oG we split up the distribution function into a low-frequenif)
+ /5 Avk oY (y,kM)fo(y)dy partfs and a partf,,, which oscillates at the laser frequency
wg. From Eq.(1), we deduce the hf and the If equations
(4)
afs e &fh
where, tm En- — ) = Ceilfs), ®
D= f y3F(y,kn o d
=],y (y, )ay 17 o e e o
U me o v eil fhn),
F=[(1+(a/5)?) Y22,
_ 2 2 where the bracket. . .) denotes the average over the laser
GC=2(1+a%0)/[3(1+a’p)(1+2F)], period. The explicit derivation of Eq$8) and (9) needs to
_ 2 _ _ 2 specify the laser-wave polarization.
a=8khy", §=3m/2, 6=30/5 (i) Linearly polarized laser wave. The laser electric field
and 8= (56%/252-3/4)/( 5%~ 30). (5) ~ can be expressed as
In Egs. (3)—(5), c is the light speedw, is the plasma fre- Ej= R Egexpli wgt) ]X (10)

quency,y= v2/2vt is the normalized square velocitfg is
the isotropic distribution function, ant},f,, the first and
the second anisotropic distribution function defined throug
the expansion of the distribution function upon the Legendre

hand the distribution function can be expanded as

polynomials,P,(v,/v), f(v,t) =fs(v,u,t) + R f(v, w)expliogt) ], (12)
_ S 11 where u=cosf=v,/v.
f |:Eo fi(0)Pi(vy/o)v2l+1. © Using Egs.(2), (10), and(11), Egs.(8) and(9) become

Equation(3) shows that the group velocity is described by P of

the first anisotropic distribution functiofy, whereas in Eq. _Ss_ —— (1—p? _Ss

(4), the first term represents the dissipative effects and the at v du I

second one, the Weibel source, which depends on the second

anisotropyf,. Note that, Eqs(3) and (4) recover in the 1 = o 1 of
collisionless limit k\>1), the results derived in Ref7]. - = { (M Zhy ~(1- u2) _h>
For the Weibel instability analysis in inhomogeneous plas- 2 I
mas, the relevant physical quantity is the number of convec-

tive e-foldings C. This quantity may be computed with the

WKB method and

Jv
(12
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_ v 9 afy, where ¢=arctg@,/vy). From Egs.(2), (8), (9), (16), and
fwofn——3 F” (1—u?) - (17), we deduce the'lf and the hf equations,
. i 1 i afs v 9 ( 2) dfs
_e J J - 35 (1-pf) —
- 2y 2 ot
me K o0 ﬂv v (1= )
(13) 1 _|e of of 1 f
_ _ L pd B (sima)<—“—ﬁ—“)+.——“, (18)
where the notatiorf*) denotes conjugate complex. 2 mev2 v v du) sinf v
For solving Eqs(12) and(13), we use the following ex- _ _ _
pansions o F B afy, _eE 0fs_ u ofg
) lwofh 35,“( M)& _mex/isn( PR
fs:I_ZO V2I+ 1P () f5 (v) (19
- In this case we use the expansions
and fy= 2 V21 1P () fn(v), fo= 2 V2IHIP(w)fs(0), (20)

where we recall that th®,(u) are the Legendre polynomi-

als. Using recursion relatiofd 1] of the Legendre polyno- fh=2 \/2I+1P,1(,u)fhl(v), (21
mials, after some algebra, E(L3) becomes I=0

where the Pll(,u) are the associated Legendre functions.

To)=| ieEq N e I(I+1)v]| v " ifSH These expansions are imposed by the geometry of the prob-
h{v)= woMe  w2mg  v3 21—1 gp v' 1 lem. Using Eqgs(18)—(21), and recursion relationgl1] on

the P}(u), we obtain
2|+1 1 9 I+2_

A 3 2w Y e a4

ieEg N ey, 1(1+1)v

f_h,<v>=[—
where the high-frequency approximatipt?] wev >, and

the notationsfs , = v2I+1fs j, , have been used. Substi-

woMeV2  wimeV2 v’
1 afs| fs
. | . . X\ o= —(|—1) —
tuting the relation(14) into Eq. (12), we obtain the secular 21-1
FP equation

B Gl |42 s 22
&f o3l g T4 ) (22)
— +—g|( +1)fy

af
— A g,
vvé{lz(l—l) L0 <|—1 10 fs, at = o® |
= — - a4 T2 —
2 21-1 21-3v*dv v :ig (14121427 1 i( 1 UZ|,1if|
Ll " ) wi | (1+1)2(1+2) 4 21+3 o240 \21+1 v o
2141 02 B gy U T 2 21+3 L 2
E— — I+3f ) _ﬂ
R ( l+1 a0 fy 21450 Si+2 4
INES Arwe e | —
v \21+1 dv v 12(1—1)2 |—1i< 1 iifs"z
N I+2 1 ¢ |+3f_ ) 15 21-1 v v \21-=3v* v v' 72
2045 0% av U sz | 19 L1

|+1f_

TArI AT Y @3

wherevy=|eEy/mewy|, is the quiver velocity of oscillation
of the electron in the hf electric field. . .
(i) Circularly polarized laser wave. Similarly, for a circu- Note Fhat Eq§(15) and (23), recover forl .:0' the isotropic

larly polarized hf laser field, equation denveq by Lan_gdo[r12], and give more general—
ized results, which take into account the contribution of the

1 IBA to the anisotropic distribution functiongI (1>0).

En=— R Eoexpiwgt)(y+i2)]. (16)

V2 B. Group velocity, growth rate, and number of convective

S . . . e-foldings
The distribution function can be split up into g

Keeping in Egs(15) and(23) the dominant terms corre-
f(v,t)y="F (v,u)+Re fr(v,u)expiwpt+id)], (17 sponding to the lower order with respect to the small param-
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as it is shown in Refs[5-8]. It results that these Weibel
modes may reach huge intensities even for localized IBA of
the laser energy.

In inhomogeneous plasmas, one has to take into account
both gradient and IBA sources. In order to get an estimate of
the IBA to the Weibel instability in laser-created plasmas,
one neglects the contributions of the heat flux and the plasma
expansior 10] sources to the second anisotropic distribution
function and keeps the contribution of the heat flux source to
the first anisotropic distribution function. For simplicity, we
assume a gentle inhomogeneous steady-state plasma, thus,
the temperature anisotropy is weak and in By, f is

'6”0120 a 8 12 16 assumed to be a Maxwellian. Furthermore, we consider a
KA laser wave normally incident on a plasma defined by an iso-
" thermal corona and a linear density profile, ie,
4<10 =n¢ x/L,. The laser electric field, is computed numeri-
cally from the wave equatiofi3]
‘?ZE“+ “0 E e 0 25
gxZ g2 ThT Mo T T @9

and the fluid electron motion equation,

> /vi=0. \
1 . : 1;273 s A Ne, % 26
Ng=9 x " _ - -
m \ a  An(x),T) ¢ mg’ (26)
-8x10%. T=2keV \\
\ whereJ.= —en.V, is the electron current density and,,
T ' ' - the fluid electron velocity. Using a circularly polarized laser
0 1 2 3 4 5 ,
K\, field, we have computed from Eg7), the number of con-

vective e-foldings for thek, modes. Three numerical cases

FIG. 1. Maximum growth ratey,., versus the parametea have been performed

(k is the wave number andthe electron mean free patfor typical Y — _ — 1014
laser and plasma parameters. The solid line and the dashed line case 1:A, =106 um, n=1 ns, I, 10 wien,
correspond, respectively, to the linearly and circularly laser wave. Z=A/2=4

eter vg/vi~e€, it results in the quasistatic approximation case 2:\ =0.53 um, 7,=0.6 ns,

(ofl9t=0), the second distribution function equation
l,=7X10"* Wicn?, Z=A2=4

J 1 90
Vv \vdap 'S0

6v
}—Uﬁfsf(l (24) case 3:\,=0.353 um, 7, =0.6 ns,
l,=2Xx10Y Wicn?, Z=A/2=4,

1 2
ﬁ pruvg

where p=—1, 2 for a circularly and a linearly polarized

laser wave, respectively. We can see from EfjS) and(23),  where,\ is the laser wavelengthy, is the pulse duration,
that the first distribution function and more generally the oddl , is the absorbed laser intensity, addis the ion charge
order components of the distribution function are negligible,number. The extents of the growth region ang—x;)

i.e., foh41~0, and on the other hand, from E@4), thatthe ~0.14_,, 0.14_,,, and 0.1Q, and the numbers of convec-
second distribution function scales ag,(v,)?~€*>. We can tive e-foldings are Cjga=115, 92, and 47, respectively.
conclude that the IBA source does not contribute efficientlyThese results show that the IBA source may drive strong
to the convection of quasistatic magnetic structures and itinstable magnetic modes at the vicinity of the critical layer.
may be an efficient mechanism for their amplification, sinceFor practical purposes, we have computed numerically the
as it is known[5,7], a second-order~ €2) anisotropic dis- expression ofC;gx With respect to the relevant plasma and
tribution function f4, corresponds, in Eq(4), to a strong laser parameters

Weibel source term. We give in Fig. 1, the spectrum of the

growth rate for two typical numerical cases. As expected, YmadS Y| [10° m/s

very high growth rates have been obtained>10" s %). Ciga=0.13 Jgr o1 Vy(mis) Ln(um)

We note that the most unstable modes range in the collision-

less regime and that in thle space, the growth region is
shifted to the lowk\ values for decreasing laser wavelength

A . In such homogeneous plasmas, the magnetic modes can
grow strongly and stagnate instead of being convected awayhere

X

L
1-6.3x10°4 )\—:) (27)
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Z+1 1/2 Ia 1/3 )\L 2/3
z ) (1014 W/cmz) (1 ,um) ’

Z+1
Z

I, si63 ), |\ 231, |12
10** wicn? 1 pum/ \\_

% ( 2—ApaTt 2(1_AIBA)1/2) 32

Vy(m/9)=1.84x10°

and

Ymad S~ 1 =7.2x10°

X

v: L
xexp( —0.693t —“).

acoustic speed/y~cs. The magnitude and the spatial loca-
tion of the magnetic field strongly depend on the laser wave-
length. For large laser wavelengths, (~10 um), the gen-
eration of the magnetic field due to the IBA source in the
vicinity of the critical layer, is as efficient as the ones due to
the HF and the PE sourcgB0]. For short laser wavelengths,

(A ~1 um), the growth region of th& field due to the PE
source is located on the very underdense plasma, whereas,
the HF and the IBA sources are confined to the vicinity of
the critical layer where, the thermal gradients are important
and, the laser energy is deposited. For decreasing laser wave-
lengths, the number of convectivefoldings strongly de-
creases for the HF sourd@0] (Cp~\_ Y9, whereas it is

still important for the IBA source. In conclusion, strong col-
lisionless magnetic modes may be driven by the Weibel
mechanisms in the corona of laser-created plasmas. For a
spatial amplification factor, ex@j~10°, corresponding to

The scaling law of the electron temperature is defined in Refe__7 5 seed of magnetic field of few kilogauss in the vicin-

[14] and the density scale length is rougtly~cs7 . The
IBA rate for a linear density profile is given Hy.3]

A|BA:l_eX T

32v, L,
15¢c N/’

We have checked for several numerical cases that(ZEf.
gives numerical fits with a good precisios={%).

IV. DISCUSSION AND CONCLUSION

ity of the critical layer, may be convectively amplified to the
megagauss range. In this range of intensity the nonlinear
saturation, as the mode coupling, occurs and rigorously our
theory is no longer valid. These fields may inhibit the ther-
mal transport, could impede the expansion of the corona, and
may contribute to the production of filamentary structures.
For future laser-produced plasma experiments, correspond-
ing to long laser duration and short laser wavelength, the
plasma gradients are weak and the IBA source should be the
most efficient mechanism for producing such megag®iss

We have shown in this work that a high-frequency elec-fields.
tric field with moderate strength may constitute an efficient
Weibel source in homogeneous plasmas. The growth rate of ACKNOWLEDGMENTS
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